3.3.70 \(\int \frac {\sqrt {a x^2+b x^n}}{c^2 x^2} \, dx\)

Optimal. Leaf size=71 \[ \frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^n}}\right )}{c^2 (2-n)}-\frac {2 \sqrt {a x^2+b x^n}}{c^2 (2-n) x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {12, 2028, 2008, 206} \begin {gather*} \frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^n}}\right )}{c^2 (2-n)}-\frac {2 \sqrt {a x^2+b x^n}}{c^2 (2-n) x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*x^2 + b*x^n]/(c^2*x^2),x]

[Out]

(-2*Sqrt[a*x^2 + b*x^n])/(c^2*(2 - n)*x) + (2*Sqrt[a]*ArcTanh[(Sqrt[a]*x)/Sqrt[a*x^2 + b*x^n]])/(c^2*(2 - n))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 2028

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b
*x^n)^p)/(c*p*(n - j)), x] + Dist[a/c^j, Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c,
j, m, n}, x] && IGtQ[p + 1/2, 0] && NeQ[n, j] && EqQ[Simplify[m + j*p + 1], 0] && (IntegerQ[j] || GtQ[c, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {a x^2+b x^n}}{c^2 x^2} \, dx &=\frac {\int \frac {\sqrt {a x^2+b x^n}}{x^2} \, dx}{c^2}\\ &=-\frac {2 \sqrt {a x^2+b x^n}}{c^2 (2-n) x}+\frac {a \int \frac {1}{\sqrt {a x^2+b x^n}} \, dx}{c^2}\\ &=-\frac {2 \sqrt {a x^2+b x^n}}{c^2 (2-n) x}+\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {x}{\sqrt {a x^2+b x^n}}\right )}{c^2 (2-n)}\\ &=-\frac {2 \sqrt {a x^2+b x^n}}{c^2 (2-n) x}+\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^n}}\right )}{c^2 (2-n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 99, normalized size = 1.39 \begin {gather*} \frac {2 \left (-\sqrt {a} \sqrt {b} x^{\frac {n}{2}+1} \sqrt {\frac {a x^{2-n}}{b}+1} \sinh ^{-1}\left (\frac {\sqrt {a} x^{1-\frac {n}{2}}}{\sqrt {b}}\right )+a x^2+b x^n\right )}{c^2 (n-2) x \sqrt {a x^2+b x^n}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*x^2 + b*x^n]/(c^2*x^2),x]

[Out]

(2*(a*x^2 + b*x^n - Sqrt[a]*Sqrt[b]*x^(1 + n/2)*Sqrt[1 + (a*x^(2 - n))/b]*ArcSinh[(Sqrt[a]*x^(1 - n/2))/Sqrt[b
]]))/(c^2*(-2 + n)*x*Sqrt[a*x^2 + b*x^n])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.06, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a x^2+b x^n}}{c^2 x^2} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[Sqrt[a*x^2 + b*x^n]/(c^2*x^2),x]

[Out]

Defer[IntegrateAlgebraic][Sqrt[a*x^2 + b*x^n]/(c^2*x^2), x]

________________________________________________________________________________________

fricas [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2+b*x^n)^(1/2)/c^2/x^2,x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a x^{2} + b x^{n}}}{c^{2} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2+b*x^n)^(1/2)/c^2/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(a*x^2 + b*x^n)/(c^2*x^2), x)

________________________________________________________________________________________

maple [F]  time = 0.72, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a \,x^{2}+b \,x^{n}}}{c^{2} x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2+b*x^n)^(1/2)/c^2/x^2,x)

[Out]

int((a*x^2+b*x^n)^(1/2)/c^2/x^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\sqrt {a x^{2} + b x^{n}}}{x^{2}}\,{d x}}{c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^2+b*x^n)^(1/2)/c^2/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(a*x^2 + b*x^n)/x^2, x)/c^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {b\,x^n+a\,x^2}}{c^2\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^n + a*x^2)^(1/2)/(c^2*x^2),x)

[Out]

int((b*x^n + a*x^2)^(1/2)/(c^2*x^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\sqrt {a x^{2} + b x^{n}}}{x^{2}}\, dx}{c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**2+b*x**n)**(1/2)/c**2/x**2,x)

[Out]

Integral(sqrt(a*x**2 + b*x**n)/x**2, x)/c**2

________________________________________________________________________________________